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Large-scale computational results are presented for a three-dimensional flow containing a 
vortex sheet shed from a delta wing. A series of results computed under mesh refinement are 
compared with a vortex-element solution in which the vortex sheet is tracked as a non-diffus- 
ing discontinuity. The results are analyzed for the position of the vortex features captured in 
the Euler flowtield, the accuracy of the pressure field, and for the diffusion of the vortex sheet. 
The conclusions are that, with a sufficiently tine mesh, the dynamics of shed vortex flow are 
reasonably resolved and can be studied by grid-based solutions. The numerical solution 
indicates that the non-axisymmetric disturbance caused by the trailing edge of the wing sets 
up a torsional wave on the vortex core and produces a structure with multiple cells of vor- 
ticity. Although observed in coarse grid solutions too, this effect becomes better resolved with 
mesh refinement to 614,090 grid volumes. It is argued that this phenomenon is real, not 
numerical, and that it is not a form of vortex bursting. Instead, the conjecture is made that the 
phenomenon is the result of a vortex instability. 0 1988 Academic Press, Inc. 

INTRODUCTION 

Consider incompressible flow past a flat delta wing in which a stable’ vortex 
sheet is shed from the leading edge and then coils up into a steady vortex over the 
wing (Fig. 1). We have investigated the qualitative as well as quantitative aspects of 
this flow, computed by artificial compressibility, in comparison to the results of a 
3D panel method that fits the vortex sheet to the surrounding potential flowfield 
[ 1,4]. The overall comparison between these two was quite favorable, but the 
Euler solution indicated a peculiar structure within the vortex core just ahead of the 
trailing edge that was not seen in the potential results. It raises the question of 
whether this feature is real in the sense that it belongs to the exact solution of the 

’ The stability analysis by Moore [11] shows that such a sheet is marginally stable to two-dimen- 
sional disturbances. In some cases experimental observation indicates that the sheet becomes unstable to 
three-dimensional disturbances. 
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edge vortex 

FIG. 1. Schematic of shed vortex sheets rolling up into stable vortex structures. 

equations, or whether it is due only to the numerical method; i.e., the approximate 
solution is far from the exact one. There are, however, grounds to believe that such 
a curious feature on an otherwise conical vorticity field may in fact be physically 
realistic. It may well be the often-observed phenomenon of vortex bursting where 
the core of the vortex suddenly bellows out, and the circumferential velocity 
decreases dramatically. At the trailing edge the flow experiences a substantial 
upwash which lifts the vortex core and may cause it to burst. 

The upwash gives curvature and therefore torsion [2] to the vortex core. This 
uplifting phenomena can be clearly seen in the vortex-element solution of 
Hoeijmakers [ 1 ] (Fig. 2), and it suggests a second possible mechanism at work to 
explain the curious structure in our numerical solution ahead of the trailing edge. 
The torsional force induced by the upwash may set in motion helical waves 
throughout the region of the vortex core. Under certain conditions such motion 
may become unstable and lead to the so-called multiple-vortex phenomenon [3 3. It 
is conjectured here that the nonconical structure we found ahead of the trailing 
edge is real rather than numerical and that it is related to the multiple-vortex 
phenomenon. This paper attempts to test this hypothesis by the method of grid 
refinement in order to see if the sequence of solutions obtained on progressively 
liner and liner grids approaches some limit which can be considered close to 
the exact solution. The paper is a report on the findings of the refined-grid 
computations along with an interpretation of the results. 

FIG. 2. The vortex sheet fitted as a discontinuity to the potential solution shows the curving of the 
vortex structure due to the upwash at the trailing edge. 
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Fine grids lead to computations on a very large scale that can consume all of 
the memory and several hours of time on current vector supercomputers. It is 
not uncommon to encounter computations involving several trillion arithmetic 
operations. In practice the size of the computer’s real memory determines the 
degree of fineness of the computational mesh. Peripheral storage techniques, like an 
SSD unit, is a means around this, but it appears that its effectiveness is somewhat 
limited. All our calculations used only the real memory of the CYBER 205 with 
16 M 32-bit words of storage. The grid was relined to fill the entire memory of the 
machine. Our previous solution was obtained on a medium-sized grid of 
80 x 24 x 40 cells [4]. The line-mesh solution presented here using 160 x 48 x 80 
cells confirms, but in greater detail, the presence in the medium-mesh calculation of 
an azimuthal disturbance superposed upon the vortex core as it approaches the 
trailing edge of the wing. It is not altogether implausible that the shearing of the 
flow by the trailing edge causes this wave-like disturbance and the occurrence of the 
multi-celled vortex core. 

FINITE-VOLUME METHOD USING 
ARTIFICIAL COMPREWIBILITY 

The method used here has been presented before. The description now is only a 
brief outline. The equations of the artificial compressibility concept are solved using 
a spatially centered Runge-Kutta method in finite-volume form 

c2 0 0 0 

;jqdvol+M+I-rids= Y, MC 0100 0 0 10’ (1) 

0 0 0 1 

where q= [p/pO, U, u, w] and H.n= [V.n, uV.n+p/p,n.e,, uV.n+p/p,n.e,, 
WV. n + p/p,n f e,] is the vector flux of q across the surrounding faces of the 
hexahedronal cells. The term Y is a fourth-difference artificial-viscosity model. It 
has the property of an energy sink, i.e., (d/dt) q2 < 0 summed over all the cells 
including those at the boundaries. The finite-volume method then discretizes (1) by 
assuming that q is a cell-averaged quantity located in the center of the cell, and the 
flux term H(q) . n is defined only at the cell faces by averaging the values on each 
side. With these delinitions and calling the cell surfaces in the three coordinate 
directions of the mesh S,, S,, and’ SK, we obtain the semi-discrete finite-volume 
form for cell ijk, 

-&j/c= -[6,(H.S,)+6,(H.S,)+6,(H.S,)],, 

- p(d: + 6: + 8:) qijk = FD(q,k), (2) 
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where 6,(H es,) g (H -S,)i+ 112 - (H .S,)i- 112 is the centered difference operator and 
/? is a constant in the range 0 < /? < 0.02. The term FD is the discrete flux difference 
operator. Two types of boundary conditions are encountered in the problem: flow 
along the wing surface and the farfield boundary of the mesh. Because the wing is 
flat, the pressure gradient normal to the wing surfaces is zero. The leading edge 
itself introduces a geometric singularity from which the vortex sheet emanates. All 
flow gradients are large there, but their singular nature makes any estimate difficult. 
Therefore the method simple sets the pressure gradient to zero at the leading edge 
also. The velocity normal to the wing is set to zero, and the pressure is taken to be 
the same as that in all the mesh cells closest to the wing. In the farfield, the boun- 
dary conditions are determined by the appropriate combination of characteristic 
variables either extrapolated from the solution in the interior or given by the con- 
stant values of the freestream flow. This is a standard technique of absorbing boun- 
dary conditions that has been proven to work well. A more detailed description of 
the method is given in Refs. [4, 51. 

With the appropriate boundary conditions we integrate Eq. (2) with the two-level 
three-stage scheme 

40:=4 

q := q. + At FD(q,) 

q := q. + Ar[$ FD(q,) + ; FD(q)] 

q := q. + A$$ FD(q,) + 4 FD(q)] 

that steps the solution forward in time with a time step based on the stability limit 
local to each particular cell. Reference [4] derives the stability of the integration 
scheme from a Fourier analysis. 

TRACKED VERSUS CAPTURED VORTEX SHEETS 

The greatest concern about the accuracy of a grid-based solution to the Euler 
equations for vortex dynamics is that the diffusion of vorticity may be too great. 
One way to maintain the diffusion at an acceptably low level is to grade the mesh 
in those regions where the vorticity is greatest. We attempt to do this with an O-O 
type mesh around the 70” swept flat-plate delta wing constructed by Eriksson’s 
interpolation method [6] that places a polar singular line at the apex and a 
parabolic singular line at the tip of the trailing edge. The outer boundary is a 
hemisphere whose center is at mid rootchord of the wing and whose radius is 3 
root-chord lengths. A subset of the mesh is drawn in Fig. 3 with 80 cells around the 
half span, 40 each on the upper and lower chord, and 24 outwards for a total of 
76.800 cells. This particular grid topology focuses cells along the leading and trail- 
ing edges, as well as the apex where the flow changes most rapidly. It requires, 
however, a slight rounding of the wing tip. Hoeijmakers and Rizzi [l] 



MULTI-CELL VORTICES 

ULAR LINE 

b 

FIG. 3. (a) Grid generated around a delta-shaped small aspect ratio wing has an 0-O topology. 
The polar singular line produces a dense and nearly conical distribution of points at the apex which is 
needed to resolve the rapidly varying flow there. This mesh is weIf-suited for computing the flow around 
wings of combat aircraft. 

(b) Three-dimensional view of the delta wing mesh. 

581/77/l-14 
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demonstrated that a stable vortex sheet can be captured in a numerical difference 
solution to Eq. (1) obtained upon this mesh which does agree well with a tracked 
non-diffusing vortex-element result (see also Ref. [4]). The captured Euler solution, 
however, indicates a wavelike structure superposed on the vortex core as it nears 
the trailing edge. A further question then arises, does the stability of the captured 
sheet, its close agreement in size and position with the non-diffusing one, and the 
observed wave structure all change as the mesh size is refined? 

Hoeijmakers’s potential boundary-integral (panel) method inserts a vortex sheet 
consisting of small panels or vortex elements, adjusts it to the surrounding 
irrotational flowtield, and allows it to roll up under its own influence for several 
turns, and then models the remaining core by an isolated line vortex [7]. The 
position and strength of the vortex sheet and isolated vortex are determined as part 
of the solution, sometimes termed “tracking or fitting” the rotational flow features. 
They are true discontinuities, infinitesimally thin, and for this reason a very good 
choice for comparison with a sheet and vortex smeared or “captured” over a num- 
ber of computational cells. The comparison therefore offers a good check on the 
position of the computed vortex and the diffusion of the sheet as well as how these 
change with mesh size. Furthermore such panel-method results have been found to 
agree reasonably well with measurements made in turbulent flow [8]. 

LARGE-SCALE COMPUTATION WITH MESH REFINEMENT 

Where the flow, is smooth, the method is second-order accurate, but across dis- 
continuities a formal estimate of accuracy loses meaning because the expansion 
upon which it is based breaks down. We might expect, however, the thickness of 
the rotational flow features captured in the solution to the Euler equations to vary 
in some manner with the size of the mesh cells. The simplest way, therefore, to 
minimize the diffusion of vorticity and to confirm the accuracy of the solution is to 
use as dense a mesh as possible. The large-scale computation presented here was 
carried out on a fine mesh with twice as many cells 160 x 48 x 80 (over 600,000) as 
the previous solution [4], now called the medium-mesh results. The computations 
were carried out on the CYBER 205 vector computer in 32-bit precision at the rate 
of 6 ~LS per cell per iteration which translates to over 125 mflops. The results for the 
fine mesh have been integrated for 2500 time steps where the solution is steady. The 
working data set was nearly 14 M 32-bit words in size and resided entirely in real 
memory. Our experience indicates that it is very effective to run large-scale com- 
putations like these in a machine with ample real memory but under virtual- 
memory management. This is because at the start of the computations there are 
some intialization tasks that require additional scratch arrays, but which can be dis- 
carded after the iteration cycle has begun. At start-up practically 18 M words are 
needed, but the demand reduces to 14 M once the main cycle has begun. Virtual 
memory is one way to handle this initial‘overflow of 4 M words. 
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On the other hand, we have found it very ineffective to rely on virtual memory 
for the working set of the main iteration. This may well be due to the very slow 
disks of the CYBER 205, but it seems that even a faster unit like the SSD device has 
some limitations, as discussed by Bucher and Jordan [lo]. They find that even 
though the hardware speed of the SSD is fast, large problems can still be I/O 
bound. This has to do with the balance between access and transfer times of the 
particular hardware unit, as well as with the size of the non-overlapped I/O 
operations and the buffer size. But it also seems to depend upon the software 
because in FORTRAN the buffers are filled by transfers of blocks of only 64 words 
at a time. Because of these uncertainties about its optimal performance I have not 
pursued the use of peripheral memory storage. Instead I have limited the mesh 
dimensions so that the working set resides entirely in main memory. 

The overall features of the flows in the medium and the line meshes are compared 
in Fig. 4 by isograms, drawn in plane projection, of the computed solution in three 
nonplanar mesh surfaces x/c =0.3, 0.6, and 0.9 over the wing, one surface in the 
wake at x/c = 1.15 and one cutting axially through the core of the vortex. The two 
solutions do agree and reveal qualitatively the leading-edge vortex over the wing, as 
well as the trailing-edge vortex that develops from the trailing-edge sheet. The com- 
parison shows that the broad features of the flow are represented in both grids and 
that they do not change substantially under mesh refinement. The isograms viewed 
along the axis of the core indicate the approximately conical nature of the flow 
starting at the apex. In both solutions at about 80% chord position, however, the 
leading-edge vortex lifts up slightly because of the rising pressure gradient beyond 
the trailing edge where the flow must eventually return to freestream pressure. This 
uplifting breaks the conical symmetry of the vortex and coincides with the asym- 
metric structure seen in the vorticity and total pressure fields ahead of the trailing 
edge (Figs. 4 and 5). Is this feature vortex bursting? Experiments with this wing 
have shown that bursting occurs over the wing at a higher angle of attack, about 
30”. Also the characteristic trait of bursting is a sudden thickening or bellowing out 
of the vortex core. The results here do not seem to suggest vortex bursting. 

Instead I favor another possible physical explanation. Since the pressure gradient 
beyond the trailing edge is increasing, it forces the vortex core to begin to lift up 
from the wing even before the edge. It gives the core curvature. Betchov’s analysis 
then suggests that the core will spiral, and may become unstable. The most striking 
feature of these results is the abrupt change in the contour patterns that takes place 
ahead of the trailing edge between the two sections x/c = 0.6 and 0.9. It might be 
interpreted as a multi-celled vortex phenomenon. Although the cause of this feature 
may still be numerical, we should expect the core to undergo a helical disturbance 
physically that could excite an instability like the one discussed by Snow [3] which 
results in multiple vortices. At least it is a plausible explanation of the numerical 
results. In any event more of the local details are brought out in the tine mesh, but 
the streamwise position and overall dimension of the phenomenon does not change 
with mesh size. 

NO loss occurs in the total pressure in the tracked vortex-sheet solution, but sub- 
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FIG. 4. Comparison of contour maps of the medium-mesh (80x24 x40) and line-mesh 
(160 x 48 x 80) solutions to the Euler equations (1) for flow past a 70” swept flat plate delta wing, They 
are drawn in four non-planar mesh surfaces at the x/c = 0.3, 0.6, 0.9, and 1.15 stations and in one mesh 
surface which passes approximately through the axial core of the vortex. M, = 0, a = 20”. 

(a) Isobars of pressure coefficient C,,. 
(b) Vorticity magnitude contours (not the same increment for medium and tine contours). 
(c) Contours of total pressure coefticient. Increment = 0.4. 

stantial losses do appear in my solutions where the sheet is captured over a number 
of mesh cells. The losses occur in two distinct locations and for different reasons. 
Near the leading edge of the wing the loss is attributed to the numerical effect of 
capturing the vortex sheet that is shed from the edge. Theoretically the loss should 
be zero on each side of the sheet, even though the velocity is in shear. But the 
numerical solution has to support this shear with a continuous profile over several 
mesh cells through the sheet, and any sort of reasonable profile (say a linear one) 
connecting the velocity vector on one side with the one on the other side 
immediately implies a total pressure loss for the profile even if the velocities at both 
sides are correct. This is the explanation given by Powell et al. [9]. The loss can be 
seen as an order-one error made in capturing the sheet. It is unavoidable and is just 
like the error that occurs when capturing a shock wave. What is important is to 
obtain the magnitude of the shear across the sheet reasonably correctly, just as one 
must calculate the jump in pressure across a shock correctly. And the comparison 
here with the tracked-sheet solution seems to suggest that this is the case. 

The vortex core itself evolves from the sheet as it spirals inward tighter and 



216 ARTHUR RIZZI 

MEDIUM FINE 

0.5 

L 

(2 
g:\ 

0.5 

i 

0 x/c=o.s 0.5 
z/s(x) 

@ 

(‘0 \\ 

0 0.5 1.0 
y/s(x) 

FIG. 5. Comparison of the vorticity fields indicated by vorticity magnitude contours (solid lines) 
computed with the Euler equations (1 ), using the medium and tine meshes, and the shed vortex (dashed 
lines) that is fitted as a discontinuity to the surrounding potential solution obtained by the 3D panel 
method. 

tighter. This is a dissipative process, and since the method here is only artificially 
dissipative, the details cannot be correct. Moreover, with the kind of grid resolution 
offered here, even in the fine-mesh solution, barely one turn of the spiral is resolved 
before all trace of the jump in velocity shear is diffused into a region of smooth vor- 
ticity distribution. The vorticity reaches a maximum at the center of this region 
where the circumferental motion is transformed into axial motion. This region is the 
computed core, of which the local structure must be considered as fictitious. The 
essential role here of the artificial viscosity, or the truncation error, is to ensure that 
the circumferential or swirl velocity vanishes in the core. But the level of loss in 
total pressure found in the core is not random, it is set by the amount of shear 
produced at the leading edge which we believe is obtained with some accuracy 
through capture of the sheet. The amount of loss then is related directly to the 
strength of the sheet. The fine mesh supports more of the spiral, but the sheet must 
eventually disappear in this mesh too, in the same way, producing about the same 
loss at the center of a now smaller diameter core. It is the diameter therefore of the 
contour rings, but not their number, that varies with mesh spacing. In this way the 
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method always produces a viscous model of the core, which of course is not 
physically precise in its detail, but it does have the correct behaviour of reducing 
the swirl velocity to zero at the center of the core. We have seen and discussed this 
effect in the case of a compressible vortex flow also [12]. 

Figure 5 presents the shape of the tracked vortex sheet (dashed lines) from the 
potential method superimposed upon the vorticity magnitude contours of the 
Euler-equation solution in three cross-flow planes, We see when looking at the 
mesh in Fig. 3 that the vorticity captured in the field is diffused over 5 or 6 cells in 
both the medium and tine mesh solutions,* and that, in general, the vorticial flow 
region occupies a larger volume than that enclosed by the vortex sheet fitted to the 
potential solution. But the positions of the vortex cores in the comparisons and 
even the curvature of the sheets near the leading edge agree remarkably well. The 
vorticity in the fitted sheet is largest near the leading edge where the curvature of 
the sheet is singular, and the Euler-equation solutions indicate the same trend. The 
sheet appears to depart tangentially from the lower surface of the leading edge. This 
comparison with mesh refinement confirms that a stable vortex sheet separating 
from a swept leading edge can be captured in the vorticity field of the Euler- 
equation solution with a reasonable degree of realism. The curious distortion of the 
contours in the x/c = 0.9 station and the associated cellular pattern of vorticity are 
a better representation of the phenomenon in Fig. 4 which I called a standing tor- 
sional wave on the vortex core that gives rise to subsidiary vortices. Notice that the 
region of vorticity in this section does not bellow out appreciably, as one would 
expect if the vortex had actually burst. And the position and size of the vertical 
region does not change very much with mesh refinement. It is noteworthy to point 
out also that a previous computation of this flow with an even coarser mesh of 
64 x 20 x 28 cells revealed a similar feature at the same location and approximately 
the same size, but only with less detail [ 131. This converging (but still not yet con- 
verged in the core) sequence of three computations strongly suggests that this 
feature ahead of the trailing edge belongs to the true solution of the equations. 

Figures 6a, b present isograms on the wing surface together with the more quan- 
titative graphs of spanwise distributions at three x/c = constant stations and com- 
pare them with the potential values. In the sets of computed isobars (Fig. 6a) the 
pressure trough under the leading-edge vortex has about the same shape, position, 
and width, and the three agree rather well. The peak level of the suction along the 
entire trough on the upper surface is somewhat lower in the medium-mesh Euler 
results, and shifted slightly inboard at x/c= 0.3, but the fine-mesh results show a 
trend toward the potential solution. The tine-mesh results portray a pronounced 
waviness that may be a reflection of the character of the vortex as it approaches the 
trailing edge. A vortex core in helical motion might well produce such a pattern on 
the upper surface. This waviness, rather surprisingly, is not present in the circum- 
ferential (u’ + w*)‘~~/I’~ velocity components on the upper surface (Fig. 6b). The 

2The increment between isovorticity contours is not the same for the medium- and tine-mesh 
solutions. 
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FIG. 6. Isograms of the computed medium-mesh and tine-mesh solutions to system (1) on the upper 
surface of the wing. 

(a) Isobars of pressure coefficient C, compared with the potential solution together with three 
corresponding graphs versus local semispan at x/c = 0.3, 0.6, and 0.9. Increment = 0.2. 

(b) Circumferential velocity (0’ + w’)‘~‘/I’~ contours. 

contours of the circumferential velocity do reach a slightly higher value in the tine 
mesh than in the medium mesh, as one would expect, because the core is better 
resolved, the diffusion is less, and the swirl velocity is somewhat greater in the outer 
core region. 

CONCLUDING REMARKS 

The artificial compressibility approach is an interesting one for solving the 
incompressible Euler equations because it is equally applicable in small as well as 
large-scale simulations, and the latter provide a lot of insight into the local details 
of the flow. As a demonstration of the method, and as an example of a vortex flow 
requiring further understanding, a steady 3D flowfield with a free-shear layer has 
been computed, and its features have been discussed under grid refinement. Com- 
parison with an accepted solution is reasonable, even though large (but local) 
errors in total pressure are observed, they do not seriously degrade the global 
accuracy of the solution and are shown to be an artifact of the numerical capturing 
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of the vortex sheet. A curious cellular pattern of vorticity in the core, coupled to 
a wave structure in the flow properties, also is seen to develop just ahead of the 
trailing edge of the wing and is believed to be caused by a three-dimensional 
disturbance on the vortex core. It is argued that this is not the phenomenon of 
vortex bursting because the vertical region does not suddenly bulge out. Instead 
the conjecture is that the three-dimensional disturbance of the trailing edge 
excites an instability that splits the core into several auxiliary vortices. At this time 
the reasoning remains speculative until it is either confirmed or refuted 
by further computations made using other meshes and carried out by other 
methods. 
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